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1. Introduction

In quantum gravity infinitely many independent couplings are necessary to remove the di-

vergences. Practical tools to do systematic computations with non-polynomial lagrangians

are not available today. In this paper we investigate techniques to express the one-loop

counterterms of the most general lagrangian in closed form. Consider a generic gravita-

tional action constructed with the curvature tensors and their derivatives,

Stree =

∫
Ltree.

The one-loop counterterms are collected in a functional S1div uniquely determined by Stree,

S1div =

∫
L1div = S1div(Stree).

If S1div(Stree) could be written explicitly, it would be possible to search for special Stree’s

containing a finite number of independent couplings, such that

Stree − S1div(Stree) = S′
tree,

up to two-loop corrections, where S′
tree coincides with Stree up to redefinitions of fields

and couplings. If Stree were so special to satisfy analogous identities for the two-loop and

higher-order counterterms, then it would define a “renormalizable” theory.

The search for renormalizable theories beyond power counting is not an easy task, but

can teach us a lot about the structure of counterterms and their classification. In quantum
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gravity renormalization turns on vertices with dimensionalities greater than four. It is well-

known that in the absence of matter, the one-loop counterterms can be eliminated with

a field redefinition of the metric tensor [1]. The first new vertex is cubic in the Riemann

tensor and removes a two-loop divergence [2, 3]. The corrected quantum gravity lagrangian

reads

SQG =
1

2κ2

∫ √−gR + λ

∫ √−gRµνρσRµναβRρσ
αβ + O(R4). (1.1)

Expanding (1.1) around a background metric, the one-loop Feynman diagrams are encoded

in the determinant of a differential operator containing higher-derivative terms. In gen-

eral, the higher-derivative terms can be treated perturbatively or non-perturbatively. In

the former approach [1 – 3] (“quantum gravity”) they are viewed as perturbations of the

Einstein lagrangian: the theory is non-renormalizable, but perturbatively unitary. In the

latter approach [4 – 6] (“higher-derivative gravity”) they are used to improve the behavior

of Green functions at short distances: the theory is renormalizable, but not unitary. Here

we are interested in the former approach, which is equivalent to study the insertions of

higher-derivative operators in the Feynman diagrams of quantum gravity. Observe that

in (1.1) higher powers of the curvature tensor generate perturbations with an arbitrary

number of derivatives.

We illustrate our techniques in the case of a scalar operator of the form

Ĥ = Ĥ0 + Ĥ1, Ĥ0 = ¤ − ξR, Ĥ1 =

∞∑

n=0

V µ1···µnDµ1
· · ·Dµn

, (1.2)

For our purposes Ĥ1 can be treated perturbatively. We loose no generality if we assume

that the tensors V µ1···µn are completely symmetric. Indeed, commuting the covariant

derivatives every antisymmetric component of V µ1···µn can be reduced to a combination

of V -terms with fewer indices. We investigate tools to study the perturbative expansion

of the Ĥ-determinant and simplify the computation of its coefficients. Our arguments are

general and their extension to spinors, spin-1 fields and the graviton is direct. The case of

gravity is addressed.

Calculations in quantum gravity are conveniently done using the background field

method [7, 8] and, at the one-loop level, the Schwinger-DeWitt techniques [9, 10], because

they manifestly preserve covariance. The common approach is to perform a Schwinger-

DeWitt expansion of the Green function, derive a differential equation for its coefficients

and work out their short-distance expansion by repeated differentiation. However, in the

presence of higher-derivative perturbations the differential approach has some difficulties,

which can be easily overcome working at the level of operators and systematically using

the Campbell-Baker-Hausdorff (CBH) formula before taking the coincidence limits. In

some cases this approach simplifies the calculation considerably and allows the derivation

of some closed formulas. Moreover, it singles out that a number of involved expressions

are just total derivatives and so can be neglected for the purposes of renormalization.

The paper is organized as follows. In section 2 we recall the Schwinger-DeWitt ap-

proach and explain the difficulties of the differential technique. In section 3 we introduce the

CBH approach and derive the closed counterterm formulas (3.10) and (3.11) for the most
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general single insertions. We also prove the new identity (3.9). In section 4 we describe

the method in general and make explicit computations. In particular, formula (4.10) for

three-derivative perturbations is a new result. In section 5 we describe how the techniques

apply to gravity. Section 6 contains our conclusions.

2. Difficulties of the differential approach

Given an operator Ĥ, define the function H(s;x, x′), s > 0, as the solution of the equation

(
i

∂

∂s
+ Ĥ

)
H(s;x, x′) = 0 (2.1)

with the boundary condition

H(0;x, x′) =
1√

−g(x)
δ(4)(x − x′). (2.2)

If Ĥ has for example the form

Ĥ0 = ¤ − ξR, (2.3)

where ¤ denotes the covariant D’Alembertian, the Schwinger-DeWitt expansion of the

associated function H0(s;x, x′; ξ) reads

H0(s;x, x′; ξ) = − i

(4π)2s2
exp

(
iσ(x, x′)

2s

) ∞∑

n=0

(is)nAn(x, x′; ξ), (2.4)

with the boundary condition

lim
x′→x

A0(x, x′; ξ) = 1. (2.5)

In (2.4) σ(x, x′) is one half the squared geodesic distance between x and x′ and satisfies

1

2
σ;µσ;µ = σ, σ(x, x) = σ;µ(x, x) = 0, σ;µν(x, x) = gµν(x). (2.6)

Equation (2.1), with H → H0, generates a differential recursion relation for the coefficients

An, n ≥ 0, namely

(n − 2)An + σ;µAn;µ +
1

2
An¤xσ = (¤x − ξR)An−1, (2.7)

with A−1 = 0. By repeated differentiation, the recursion relation (2.7) can be used to

calculate the short-distance expansion of the Schwinger-DeWitt coefficients An(x, x′; ξ).

For this purpose, it is sufficient to compute the coincidence limits An(x, x; ξ), which are

called “diagonal coefficients”, and the coincidence limits of the covariant derivatives of

An(x, x′; ξ), which are called “off-diagonal coefficients”. The calculational method just

described will be called the “DeWitt differential approach”. The coincidence limits will

be denoted with an overline. The first two coefficients, A1 and A2 have been computed

by DeWitt in [10], A3 by Sakai in [11] and Gilkey in [12], A4 by Amsterdamski, Berkin

and O’Connors in [13] and Avramidi in [14], A5 by van de Ven in [15]. In [16] the first
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off-diagonal coefficients have been recently worked out to a considerable order and number

of derivatives.

The one-loop contributions to the generating functional Γ of one-particle irreducible

functions read

Γ(1) = − i

2

∫ ∞

δ

ds

s

∫
d4x

√
−g(x)H(s;x, x; ξ). (2.8)

Although our techniques are general, we focus on the scheme-independent (logarithmic) di-

vergences. In the notation commonly used in dimensional regularization (ln δ → −1/(2ε)),

we have

Γ
(1)
div =

1

64π2ε

∫ √−g A2. (2.9)

Thus, to study the one-loop renormalization one has to calculate the coincidence limit

of the second Schwinger-DeWitt coefficient. In the DeWitt differential approach, this goal

can be achieved repeatedly differentiating equation (2.7) and the first of (2.6), and taking

coincidence limits with the help of (2.5) and (2.6).

However, the differential approach is not convenient to study higher-derivative pertur-

bations. The reason can be appreciated already in flat space. Consider

Ĥ = Ĥ0 + Ĥ1, Ĥ0 = ∂2, Ĥ1 = λ(∂2)2. (2.10)

The unperturbed flat-space Green function reads

H0(s;x − x′) = − i

(4π)2s2
exp

(
i(x − x′)2

4s

)
.

The first observation is that the Schwinger-DeWitt expansion (2.4) of H(s;x − x′) needs

to be replaced with a sum containing arbitrary negative powers of s, namely

H(s;x) = − i

(4π)2s2
exp

(
ix2

4s

) ∞∑

n=−∞

(is)nBn(λ, x). (2.11)

Nevertheless, at each order in λ the sum is bounded from below. In particular, at O(λ)

the sum starts at n = −3. To this order, equation (2.1) gives the relations

−λ(x2)2

16
= 3B−3 − xµ∂µB−3,

3λ

2
x2 = 2B−2 + ¤B−3 − xµ∂µB−2,

−6λ = B−1 + ¤B−2 − xµ∂µB−1.

Differentiating these relations a suitable number of times and taking the coincidence limits

(x → 0), we find B−2 = B−3 = ¤B−3 = 0, plus the relations

¤2B−3 = 12λ, B−1 + ¤B−2 = −6λ, (2.12)

which are valid up to higher orders in λ. Two equations give the first of (2.12), so one

quantity, ¤B−2, remains undetermined.
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More generally, the recurrence relations for the coefficients B−k with k > 0 have the

form

kB−k − xµ∂µB−k = Pk + O(λ), (2.13)

where Pk possibily depends on ∂k′−kB−k′ with k′ > k. The left-hand side of (2.13) vanishes,

in the coincidence limit, when k derivatives act on it. Therefore (2.13) does not provide

information about ∂kB−k. This ambiguity has the following explanation. The initial

condition (2.2) determines the solution uniquely. While in the unperturbed problem (2.2)

is exhaustively expressed by (2.5), in the perturbed problem it is expressed by B0 = 1

plus suitable relations among the Bn’s with n < 0. The extra relations, however, are

not immediately readable from the expansion (2.11), because of the negative powers of s

contained in the sum, and need to be worked out independently.

For these reasons it is more convenient to pursue a strategy that incorporates the

boundary condition (2.2) automatically. This goal is achieved writing

H(s;x, x′) = 〈x | ei bHs | x′〉, (2.14)

where | x〉 are position eigenstates, x̂µ | x〉 = xµ | x〉, 〈x′ | x〉 = δ(x′ − x). Noting that in

the case (2.10) Ĥ0 and Ĥ1 commute, we can write

H(s;x, x′) = 〈x | ei bH0sei bH1s | x′〉 = ei bH1sH0(s;x, x′) = − i

(4π)2s2
eisλ(∂2)2exp

(
i(x − x′)2

4s

)
.

This procedure does not contain any ambiguity, and easily leads to

B−1 = 6λ, ¤B−2 = −12λ.

In the rest of the paper we use this strategy in curved space. We name it “CBH

approach”, because it involves a systematic use of the CBH formula. Besides avoiding

the difficulty just mentioned, in some cases the CBH approach reduces the calculational

effort considerably. Moreover, it allows us to calculate each coefficient Bn directly, without

having first to recursively calculate the Bm’s with m < n.

3. The CBH approach

In curved space, formulas (2.14) and (2.11) are replaced by

H(s;x, x′; ξ) = (−g(x))−1/4〈x | ei eHs | x′〉(−g(x′))−1/4

= − i

(4π)2s2
exp

(
iσ(x, x′)

2s

) ∞∑

n=−∞

(is)nBn(x, x′; ξ), (3.1)

where H̃ = (−g)1/4Ĥ(−g)−1/4. Define Ĥ0 and Ĥ1 as in (1.2) and write H̃ = H̃0 + H̃1. The

CBH formula reads

ei eHs = ei eH0s
∞∑

n=0

(is)n

n!

∫ 1

0
dζ1 · · · dζn T

[
H̃1(ζ1) · · · H̃n(ζn)

]
, (3.2)
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where T denotes the ordered product and

H̃1(ζ) = e−i eH0sζH̃1e
i eH0sζ =

∞∑

n=0

(−isζ)n

n!
(adH̃0)

nH̃1. (3.3)

with (adA)B ≡ [A,B]. Consider, for example, the first order in H̃1, namely the diagrams

that contain a single insertion of the perturbation. We have

H(s;x, x′; ξ) = H0(s;x, x′; ξ)+is

∫ 1

0
dζ(−g(x))−1/4〈x | ei eH0s(1−ζ)H̃1e

i eH0sζ | x′〉(−g(x′))−1/4

+O(H2
1 ).

The one-loop contributions (2.8) to the Γ functional become

Γ(1) =
1

2

∫ ∞

δ
ds

∫ 1

0
dζ

∫
d4x 〈x | ei eH0s(1−ζ)H̃1e

i eH0sζ | x〉.

The ζ-integrand is just the trace of the operator contained between the bra and the ket.

We can use the ciclicity of the trace and get

Γ(1) =
1

2

∫ ∞

δ
ds

∫
d4x 〈x | H̃1e

i eH0s | x〉 =
1

2

∫ ∞

δ
ds

∫
d4x

√
−g(x)

[
Ĥ1H0(s;x, x′; ξ)

]
x′=x

.

(3.4)

Thus, to compute the one-insertion one-loop diagrams it is sufficient to act with Ĥ1 on the

unperturbed function H0 and then take the coincidence limit. The divergent part is given

by the O(1/s) contributions to the square bracket in (3.4), namely

Γ
(1)
div =

1

4ε

∫
d4x

√
−g(x)

[
Ĥ1H0(s;x, x′; ξ)

]s−1

x′=x
, (3.5)

where the superscript s−1 is to emphasize that only the coefficient of 1/s has to be kept,

after inserting the Schwinger-DeWitt expansion for the unperturbed function H0(s;x, x′; ξ).

To illustrate these facts in a simple example, consider a complex scalar field ϕ in curved

space, described by the lagrangian

L√−g
= −∂µϕgµν∂νϕ−ξRϕϕ+ϕ (V + V µDµ + V µνDµDν + V µνρDµDνDρ + · · ·) ϕ, (3.6)

where all tensors V µν··· are symmetric.

The one-insertion divergent terms are then

Γ
(1)
div =

1

4ε

∫
d4x

√−g
[
(V + V µDµ + V µνDµDν + V µνρDµDνDρ + · · ·)H0(s;x, x′; ξ)

]s−1

x′=x
.

(3.7)

The first two types of terms give immediately

Γ
(1)
div =

1

64π2ε

∫
d4x

√−g
(
V A1 + V µA1;µ

)
=

(1 − 6ξ)

24(4π)2ε

∫
d4x

√
g

(
V R +

1

2
V µR;µ

)
.

– 6 –



J
H
E
P
1
0
(
2
0
0
7
)
0
9
9

The two-derivative term gives

Γ
(1)
div =

1

64π2ε

∫
d4x

√−g

(
V µνA1;µν − 1

2
V µ

µ A2

)

=
1

960(4π)2ε

∫
d4x

√−g[4V µν(¤Rµν +(1−10ξ)RRµν +(3 − 20ξ)R;µν − 2RρσRρµσν)

−V µ
µ

(
2RνρR

νρ + 4(1 − 5ξ)¤R + (60ξ2 − 20ξ + 1)R2
)
].

The three-derivative term gives

Γ
(1)
div =

1

64π2ε

∫
d4x

√−g

(
V µνρA1;µνρ −

3

2
V µν

µ A2;ν

)

=
1

64π2ε

∫
d4x

√−g

[(
ξ

8
− 1

40

)
R µ

;µ νV
νρ
ρ +

1

20
RµρRµνρσV νσα

;α +
1

80
RµνRµνV αβ

α;β

+

(
1

30
− ξ

4

)
R;µνρV

µνρ +
1

40
R α

µν;α ρV
µνρ +

(
ξ

4
− 1

40

)
RµνRV µνρ

;ρ

−
(

1

80
− ξ

4
+

3

4
ξ2

)
RR;µV νµ

ν

]
. (3.8)

The four-derivative term gives

Γ
(1)
div =

1

64π2ε

∫
d4x

√−g

(
A1;µνρσV µνρσ − 3A2;µνV µνρ

ρ +
3

4
A3V

µν
µν

)
.

The coincidence limits A3, A2;µν and A1;µνρσ that are necessary to write this expression

explicitly have been worked out in [16] and rederived by ourselves.

The five- and six-derivative term gives

Γ
(1)
div =

1

64π2ε

∫
d4x

√−g

(
A1;µνρσαV µνρσα − 5A2;µνρV

µνρσ
σ +

15

4
A3;ρV

µνρ
µν

)
,

Γ
(1)
div =

1

64π2ε

∫
d4x

√−g

(
A1;µνρσαβV µνρσαβ − 15

2
A2;µνρσV µνρσα

α

+
45

4
A3;ρσV µνρσ

µν − 15

8
A4V

µνρ
µνρ

)
,

respectively. Apart from A4 , which has been computed in [13] and [14], the unperturbed

coefficients appearing in these formulas have not been written in the literature.

A useful identity. The formula for Γ
(1)
div can be simplified using the identity

σ;λ(µ1···µn) = 0, ∀n > 1, (3.9)

where the parenthesis means complete symmetrization. Expressions such as V µ1···µnσ;µ1···µn

and similar are thus identically zero. This property reduces the number of σ-derivatives

that need to be computed to work out Γ
(1)
div. Formula (3.9) can also be used to derive the

coincidence limits σ;µ1···µn
in a more efficient way.
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The proof of (3.9) can be done by induction. For n = 2 the identity is true, since

σ;µ1µ2µ3
= 0. Assume that it is true up to n = n > 2. Taking one derivative of the first

equation of (2.6), we get

σ;µ = σ;λσ;λµ = σ;λσ;µλ.

Now, take n + 1 derivatives of this equation and symmetrize completely in those. We get

σ;µ(µ1···µn+1) =

n+1∑

k=0

(
n + 1

k

)
σ;λ

(µ1···µk

σ;µλ µk+1···µn+1),

where λ and µ are excluded from the symmetrization. Now, take the coincidence limit

of this expression and use the inductive hypothesis, together with σ;µ = 0. The result

simplifies to

σ;µ(µ1···µn+1) = (n + 1)σ;λ
(µ1

σ;µλ µ2···µn+1) + σ;λ
(µ1···µn+1)

σ;µλ.

Using σ;µν = gµν we arrive immediately at

σ;µ(µ1···µn+1) = (n + 2)σ;µ(µ1 ···µn+1),

which proves the statement. We have checked (3.9) explicitly up to n = 7 included, using

the complete expressions of σ;µ1···µn
, n ≤ 8, derived with a computer program.

The general formula. Using (3.9) it is possible to work out the general formula

Γ
(1)
div =

1

64π2ε

∫
d4x

√−g
∞∑

n=0

[n/2]∑

k=0

(−1)kn!

4kk!(n − 2k)!
Ak+1;µ1···µn−2k

trkV
µ1···µn−2k , (3.10)

where [n/2] is the integral part of n/2 and trkV means that k pairs of V -indices are traced.

The formula is derived as follows. Consider (3.7) with the perturbation V µ1···µnDµ1
· · ·Dµn

:

Γ
(1)
div =

i

4ε(4π)2

∫
d4x

√−g

{
V µ1···µnDµ1

· · ·Dµn

[
exp

(
iσ(x, x′)

2s

) ∞∑

n=0

(is)n−2An(x, x′; ξ)

]}s−1

x′=x

.

Since the derivatives are symmetrized, any time three or more of them act on σ(x, x′)

the contribution vanishes in the coincidence limit. Moreover, since σ;µ vanishes, only two

derivatives can act on the same σ, all others having to act on the An’s. Since σµν = gµν ,

two derivatives acting on σ trace a pair of V -indices. The remaining combinatorics are

then straightforward and give

Γ
(1)
div =

i

64π2ε

∫
d4x

√−g





[n/2]∑

k=0

(−1)kn!

22kk!(n−2k)!

∞∑

m=0

(is)m−2−kAm;µ1···µn−2k
trkV

µ1···µn−2k





s−1

,

which proves (3.7).

In renormalization theory a further simplification applies. Indeed, it is not necessary

to include in (3.6) independent terms proportional to ¤ϕ, because they can be converted

– 8 –
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into terms of other types by means of ϕ-field redefinitions. Up to terms proportional to

the ϕ-field equations, ¤ϕ can be replaced with

ξRϕ − (V + V µDµ + V µνDµDν + V µνρDµDνDρ + · · ·)ϕ.

Thus, a repeated use of field redefinitions can eliminate all boxes acting on ϕ. Moreover,

any couple of contracted V -indices can be moved to a box acting on ϕ commuting the

covariant derivatives, up to V -terms with fewer indices. Thus, it is sufficient to take

symmetric, traceless V ’s. The final result is then just

Γ
(1)
div =

1

64π2ε

∫
d4x

√−g

∞∑

n=0

A1;µ1···µn
Vµ1···µn . (3.11)

4. Calculation of total derivatives and multiple insertions

In a variety of computations, for example the short-distance expansion of Green functions,

total derivatives have to be kept. Moreover, with multiple Ĥ1-insertions, even neglecting

total derivatives, the calculation simplifies much less than with single Ĥ1-insertions. In this

section we describe how the calculation based on the CBH approach proceeds in the general

case and report a number of sample and new calculations of the perturbed coefficient B2.

First we focus on the total-derivative corrections to the single H1-insertion results computed

in the previous section. Later we classify the structure of contributions in the general case.

The scalar-potential, one-derivative and two-derivative results (4.4), (4.5) and (4.7)

are known. They can be derived in a variety of conventional ways. We rederive them with

our techniques to illustrate the CBH approach. They are also useful to introduce the more

difficult derivation of the three-derivative new result (4.10).

Write

H(s;x, x′; ξ) = H0(s;x, x′; ξ) + H1(s;x, x′; ξ) + O(H2
1 ).

From the CBH formula (3.2) we get

H1(s;x, x′; ξ) =

∞∑

n=0

(is)n+1

(n + 1)!
(adĤ0)

nĤ1H0(s;x, x′; ξ). (4.1)

Suppose that the interaction Ĥ1 contains at most m derivatives and that we are interested

in the calculation of the coincidence limit of a given perturbed coefficient, say Bk. Since

Ĥ0 contains at most two derivatives and each commutator adĤ0 raises the number of

derivatives by one unit, (adĤ0)
nĤ1 contains at most m+n derivatives acting on the function

H0(s;x, x′). When derivatives act on the exponential prefactor F ≡ exp (σ(x, x′)/(2is)),

they lower the s-power.

Although each derivative acting on F lowers the s-power by one unit, to give a non-

trivial contribution in the coincidence limit derivatives have to act on F at least in pairs,

because σ;µ = 0. Thus, in the coincidence limit, the s-power can be lowered by at most

[(m + n)/2] units. The lowest s-power that multiplies the unperturbed coefficient Ak′ is

n + 1 −
[
m + n

2

]
+ k′ − 2. (4.2)
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Here the factor sn+1 comes from (4.1), while sk′−2 multiplies Ak′ inside H0(s;x, x′). Now,

in the Schwinger-DeWitt expansion (3.1) of the function H(s;x, x′; ξ), the coefficient Bk is

multiplied by k − 2 powers of s. Equating this number (4.2), we see that, for the purpose

of computing the single-insertion perturbations to Bk, the sum in (4.1) becomes finite. It

stops at the n such that

n + 1 −
[
m + n

2

]
= k. (4.3)

With multiple insertions, say j, the sum of (3.3) is raised to the power j. Call n the total

power of adĤ0 contributing from the H̃1(ζ)s and mj the total number of derivatives carried

by the j insertions. Then equation (4.3) is generalized to

j + n −
[
mj + n

2

]
= k,

The list of contributions stops when the total power of adĤ0 reaches the value n.

This counting proves that the CBH method is consistent with the perturbative ex-

pansion, and the coincidence limit of each perturbed Schwinger-DeWitt coefficient can be

calculated algorithmically. However, the calculation can become lengthy quite soon, even

for computer programs. We now compute the single-insertion perturbations to B2 for the

cases considered in the previous section and classify the contributions of multiple insertions

in more detail.

Scalar-potential perturbation. The simplest perturbation is the scalar potential V (x).

In formula (4.1) the term with n = 0 has one power of s, so it gives a contributions propor-

tional to A1. The term with n = 1, contains two powers of s and at most one derivative

acting on H0(s;x, x′), so its contributions are proportional to A0;µ, which vanishes, and

A0 = 1. The term with n = 2 contains three powers of s and at most two derivatives

acting on H0, which lower the s-power by at most one unit when they act on the prefactor

F . This contribution is again proportional to A0, and ¤V . The terms with n ≥ 3 do not

contribute, because they contain too many powers of s and too few derivatives to lower

them. Working out the commutators we get

∆B2 =

(
1

6
− ξ

)
RV +

1

6
¤V. (4.4)

One-derivative perturbation. Now, consider the perturbation V µDµ. The first term

of (4.1) gives a contribution proportional to A1;µ. The second term contains two powers

of s and at most two derivatives acting on H0, thus it gives contributions proportional to

A0;2 and A1, where A0;2 denotes any object with less than three derivatives, namely A0;µν ,

A0;µ and A0. The third term has at most three derivatives on H0. Two of them are used

to lower one s power, so the contribution is proportional to A0;1. The third term has four

derivatives that have to be used to lower the s-power by two units, giving a contribution

proportional to A0. The terms of (4.1) with n ≥ 4 do not contribute, because they have

too many s’s and too few derivatives acting on H0. The result is

∆B2 = −1 − 6ξ

12
RV µ

;µ − 1

12
¤V µ

;µ. (4.5)
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We know that the terms with n ≥ 1 are total derivatives. Using the differential

approach it is not easy to recognize the presence of such total derivatives, which are often

very involved. The simplest of them is

〈x | ei eH0s(adH̃0)H̃1 | x〉.

Let us inspect it more closely, to see what kind of relations it generates. First observe that

we can always move the covariant derivatives away from V µ, eventually adding other total

derivatives. When we do this, we get a relation of the form

V µJµ = total derivative,

for some current Jµ. Next, integrating this relation over spacetime and using the arbitrari-

ness of V µ, we obtain the identity Jµ = 0. Finally, substituting the σ-coincidence limits,

we obtain a relation for the Ak-coincidence limits. The result is

0 = DµA1 + ξA0R;µ + ¤A0;µ − 2DνA0;µν + A0;νR
ν
µ. (4.6)

Notice that some derivatives are taken before the coincidence limits, others are taken after

the coincidence limits. The values of A0;µν , A0;µ, A0 and A1 are reported in the appendix

and indeed satisfy (4.6). More complicated identities are generated by the other terms

of (4.1).

Two-derivative perturbation. Let us consider the perturbation V µνDµDν . The term

with n = 0 in (4.1) contains two derivatives, that can either act on the exponential pref-

actor of H0, lowering the s-power by one unit, or on the unperturbed Schwinger-DeWitt

coefficients contained in the expansion of H0. The resulting contribution is a linear com-

bination of A2 and A1;2. The term with n = 1 contains at most three derivatives acting

on H0, two of which can act on the exponential prefactor. The result is a sum of A1;1 and

A0;3. The third term of (4.1) contains at most four derivatives on H0. Four or two of them

can lower the s-power by two units or one, respectively. The contributions of this term are

proportional to A1 and A0;2. Similarly, the terms with n = 3 and n = 4 give contributions

proportional A0;1 and A0, respectively.

The final result is given by

∆B2 =
1 − 6ξ

18
RV µν

;µν +
1 − 5ξ

30
Dν(R;µV µν) +

1

36
Rµν¤V µν +

1

90
Rν

µV µρ
;νρ +

1

15
Rµν;ρV

µν;ρ

+
1

30
¤RµνV

µν +
1 − 10ξ

60
RµνRV µν +

1

90
RρσRσ

µV ρµ − 1

45
RµνρσV µρ;νσ +

1

20
¤V µν

;µν

− 1

45
RµνRµρνσVρσ − 1 − 5ξ

60
R;µtrV;µ− 1

180
RµνtrV

;µν− 1 − 6ξ

72
R¤trV − 1

120
¤

2trV

−trV

(
1 − 20ξ + 60ξ2

240
R2 +

1

120
RµνRµν +

1 − 5ξ

60
¤R

)
. (4.7)

m-derivative perturbation. In the general case, namely a perturbation

V µ1···µmDµ1
· · ·Dµm

, the first contribution of (4.1) gives the list of terms written

in (3.10). Each commutator with Ĥ0 in (4.1) raises the s-power by one unit and the
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number of derivatives by one unit. If the new derivative does not act on the exponential

prefactor of H0, we have

Ak;j → Ak−1;j+1. (4.8)

If the derivative acts on the exponential prefactor, then it must absorb a second derivative,

to give a non-trivial contribution. In this case, both the s-power and the number of

derivatives are lowered by one unit:

Ak;j → Ak;j−1. (4.9)

Combining the two operations the contributions fit into the following scheme:

n = 0 A[m/2]+1;σ(m) A[m/2];σ(m)+2 · · · A1;m

n = 1 A[m/2]+1;σ(m)−1 A[m/2];σ(m)+1 · · · A1;m−1 A0;m+1

n = 2 A[m/2];σ(m) · · · · · · · · ·
n = 3 A[m/2];σ(m)−1 · · · · · · · · ·
· · · · · · · · · · · ·

n = m A1;0 A0;2

n = m + 1 A0;1

n = m + 2 A0;0

Here σ(m) = 0 if m is even, σ(m) = 1 if m is odd. Observe that the coefficient A0;m+2,

the most involved of all, does not contribute.

For example, for m = 3 we have contributions

n = 0 A2;1 A1;3

n = 1 A2 A1;2 A0;4

n = 2 A1;1 A0;3

n = 3 A1 A0;2

n = 4 A0;1

n = 5 A0

Each of these coefficients are available in the literature and have been recalculated inde-

pendently by us. The m = 3 perturbed coefficient reads:

∆B2 =
1

40

(
1

2
¤

2 +
1

2
RµνR

µν +
5

6
R¤ +

1

4
R2 + ¤R + R;µDµ +

1

3
RµνDµDν

)
V ρσ

ρ;σ

−1

6

(
1

4
R+

1

5
¤

)
V µνρ

;µνρ−
1

20
R;µV µνρ

;νρ − 1

60
Rν

µV µρσ
;νρσ−

1

60
RµνRµρσαV ν

ρσ;α−
1

24
Rµν¤V µνα

;α

− 1

10

(
1

2
¤Rµν +

1

4
RRµν +

1

2
R;µν + Rµν;ρD

ρ − 1

3
RµρνσDρDσ − 1

2
RρσRµρνσ

)
V µνα

;α

+
1

30

(
Rν

µRνρ;σ +
1

2
RναRνρασ;µ − 1

2
Rν

µRρσ;ν

)
V µρσ +

ξ

4
RV µνρ

;µνρ +
ξ

4
R;µV µνρ

;νρ

−ξ

8

(
R¤ + (1 − 3ξ)R2 + ¤R + R;µDµ

)
V ρσ

ρ;σ +
ξ

4
(RRµν + R;µν) V µνα

;α . (4.10)

The unperturbed coefficients necessary for the m = 4 result exist in the literature [16]. For

m > 4 the necessary coefficients can be derived with computer programs, but an increasing

amount of time is required.
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Squared-Laplacian perturbation. An interesting case is the perturbation λ¤
2, which

is a linear combination of the perturbations V µ1···µmDµ1
· · ·Dµm

with m = 1, 2, 4. The

commutators are much simpler in this case and the final result is

∆B2 = λξ

[
1

15
R;µR;µ +

1

45
RµνR;µν +

1

30
¤

2R +
1

18
R¤R + ξ

(
1

6
− ξ

)
R3

]
.

Multiple insertions. So far, we have classified the single Ĥ1-insertions, but the analysis

can be generalized to more insertions. We do it for the calculation of a generic perturbed

coefficient Bk. Each multiple-insertion contribution is made by a certain number of Ĥ1’s

and a certain number of (adĤ0)’s acting on them. Call n the “level” of the contribution,

namely the total number of Ĥ0-commutators. Denote the total number of Ĥ1-insertions

with r. In each insertion, pick a perturbation V µ1···µmDµ1
· · ·Dµm

, not necessarily with

the same number m of derivatives. Call d the total number of derivatives carried by such

perturbations. Since Ĥ0 has two derivatives at most, the total number of derivatives acting

on H0 is at most equal to d+n. Acting on the exponential prefactor of H0, such derivatives

can lower the s-power by at most [(d + n)/2] units. We get non-vanishing contributions

when nmax = d + 2(k − r) ≥ 0. They are proportional to the unperturbed coefficients

Ak−r−n+[(d+n)/2];σ(d+n), Ak−r−n−1+[(d+n)/2];σ(d+n)+2 · · · Ak−r−n;d+n , (4.11)

where n = 0, 1, · · · , nmax. In (4.11) Ap;q is meant to vanish whenever p < 0.

The classification applies to any unperturbed two-derivative operator Ĥ0, in particular

the spin-2 operator defined by gravity expanded around an arbitrary background. Finally,

it can be easily generalized to operators Ĥ0 with a different maximal number of derivatives,

to include fermions.

Non-minimal terms. Even if they are not multiplied by “small” parameters, non-

minimal terms can be treated as perturbations, included in the n = 0 term of Ĥ1 in (1.2).

Indeed, each coefficient of the Schwinger-DeWitt expansion receives contributions from

a finite number of non-minimal insertions and a finite number of commutators with Ĥ0.

Moreover, because non-minimal terms do not contain derivatives, their contributions are

relatively easy to compute. For example to compute B2 for

Ĥ = ¤ + V,

we can apply (4.11) with k = 2 and d = 0. We obtain non-vanishing contributions for

n = 0, 1, 2, r = 1, 2, namely a linear combination of V 2A0, V A0, V A1 and V A0;1.

5. The case of gravity

Expanding (1.1) around a background metric and choosing the harmonic gauge, the un-

perturbed spin-2 operator has the form

Ĥ ρ′σ′

0µν = ¤

(
P ρ′σ′

2µν − P ρ′σ′

0µν

)
+ nonminimal terms,
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where

P ρ′σ′

2µν =
1

2

(
δρ′
µ δσ′

ν + δρ′
µ δσ′

ν − 1

2
gµνgρ′σ′

)
, P ρ′σ′

0µν =
1

4
gµνgρ′σ′

,

are the projectors on the traceless and trace components, respectively. Define the bitensor

H ρ′σ′

0µν (s;x, x′) as the solution of

i
∂

∂s
H ρ′σ′

0µν (s;x, x′) + Ĥ αβ
0µν H ρ′σ′

0αβ (s;x, x′) = 0, (5.1)

with the boundary condition

H ρ′σ′

0µν (0;x, x′) =
δρ′
µ δσ′

ν + δρ′
µ δσ′

ν

2
√

−g(x)
δ(4)(x − x′). (5.2)

Write the Schwinger-DeWitt expansion of H ρ′σ′

0µν (s;x, x′) as

H ρ′σ′

0µν (s;x, x′) = − i

(4π)2s2
exp

(
iσ(x, x′)

2s

) ∞∑

n=0

(is)nA ρ′σ′

nµν (x, x′).

The most general higher-derivative perturbation can be written as

Ĥ ρ′σ′

1µν =

∞∑

n=0

V ρ′σ′|µ1···µn

µν Dµ1
· · ·Dµn

, (5.3)

where V
ρ′σ′|µ1···µn

µν are completely symmetric tensors in the indices µ1 · · · µn, while the

other indices satisfy obvious symmetry properties. The CBH approach described in this

paper can be applied with virtually no change. For example, in the case of a single insertion

formula (3.4) generalizes to

Γ(1) =
1

2

∫ ∞

δ
ds

∫
d4x

√
−g(x)

[
Ĥ ρσ

1µ′ν′ H
µ′ν′

0ρσ (s;x, x′)
]
x′=x

and (3.10) becomes

Γ
(1)
div =

1

64π2ε

∫
d4x

√−g

∞∑

n=0

[n/2]∑

k=0

(−1)kn!

4kk!(n − 2k)!
A µ′ν′

k+1ρσ;µ1···µn−2k
trkV

ρσ|µ1···µn−2k

µ′ν′ .

For renormalization purposes V
ρσ|µ1···µn

µ′ν′ can be taken to be traceless in µ1 · · ·µn, which

amounts to exclude terms proportional to the field equations in (5.3). Then formula (3.11)

becomes

Γ(1) =
1

64π2ε

∫
d4x

√−g
∞∑

n=0

A µ′ν′

1ρσ;µ1···µn
V

ρσ|µ1···µn

µ′ν′ .
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6. Conclusions

In this paper we have studied improved Schwinger-DeWitt techniques for higher-derivative

perturbations of operator determinants and Green functions, to calculate counterterms and

short-distance expansions of Feynman diagrams. In the perturbative regime the differential

approach presents some difficulties, but it can be efficiently superseded by a systematic use

of the CBH formula. We have classified the contributions that arise in this framework

and outlined a number of simplification techniques. In some cases the calculational effort

reduces considerably, in particular when total derivatives can be neglected. The procedure

is very general and applies also to quantum gravity treated with the background field

method.

Certain identities, such as (3.9), are new results, to our knowledge. They have been

used to derive the closed formulas (3.10) and (3.11) that relate the most general single-

insertion perturbed Schwinger-DeWitt coefficients to the unperturbed ones, up to total

derivatives. Another new result is the three-derivative one-loop perturbed coefficient (4.10).

When total derivatives are included and/or multiple insertions are considered, the list of

contributing unperturbed coefficients becomes considerably long. Nevertheless, we point

out the simplicity of formulas (4.7) and (4.10), compared with the involved intermediate

expressions that lead to them. In particular, the inclusion of total derivatives in (4.10)

does not make the result much more complicated than (3.8), because several terms of (3.8)

are canceled by the total-derivative contributions. These facts suggest that there should

exist more powerful and systematic simplification methods than the ones uncovered here.

Hopefully the techniques of this paper can be extended and combined with the background

field method to study two-loop and higher-order radiative corrections.
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A. Conventions

The conventions used in this paper are those dubbed “SecondUp” (i.e. the default ones) in

the package Ricci [17] with metric signature (+,+,+,−). Precisely, if Vµ is a vector,

Vµ;νρ − Vµ;ρν = RµσνρV
σ, Rµν = Rρ

µνρ, R = Rµ
µ.

We have performed our computations with two independent methods. The first method

used a Mathematica package written by one of us (D.A.), the second method used the Ricci

package.

The first few Schwinger-DeWitt coefficients in the coincidence limit are

A0 = 1, A0;µ = 0, A0;µν =
1

6
Rµν , A1 =

1 − 6ξ

6
R, A1;µ =

1 − 6ξ

12
R;µ.
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